

Course Title:	Solid State Physics Lab	
Course Code:	PHYS26473	
Program: Physi	cs	
Department: Pl	nysics	
College: Scien	се	
Institution: Univ	versity of Bisha	
Version: 3		
Last Revision Da	te: 25 July 2023	

2023

TP-153

Table of Contents

A. General information about the course:	. 4
1. Course Identification	.4
2. Teaching mode (mark all that apply)	.4
3. Contact Hours (based on the academic semester)	.4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	. 5
C. Course Content	. 5
D. Students Assessment Activities	. 7
E. Learning Resources and Facilities	. 7
1. References and Learning Resources	. 7
2. Required Facilities and equipment	. 8
F. Assessment of Course Quality	. 8
G. Specification Approval Data	. 8

A. General information about the course:

1. Course Identification

1. Credit hours:	2			
2. Course type				
A. University	College 🗆	Department⊠	Track	Others
B. Required ⊠	Elective	·		
3. Level/year at which this course is offered: 7 th Level / 4 th year				
4. Course general Description				
The course deals with groups of materials in terms of their structure, electronic, optical, and				

The course deals with groups of materials in terms of their structure, electronic, optical, and thermal properties to describe basic experimental measurements, to show typical data sets and to compare these with theory.

5. Pre-requirements for this course:

NA

6. Co- requirements for this course:

NA

7. Course Main Objective(s)

Analyze and interpret experimental data of solids state physics.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	4	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1. L	Lectures	
2. L	Laboratory/Studio	60
3. F	Field	
4. 1	Tutorial	

Total

60

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Recognize the theoretical basis for ten experiments related to solid state physics lab.	К.2	Lectures Solve problems	Written test Reports Homework Quizzes
2.0	Skills			
2.1	Prepare the appropriate equipment for the experiment.	S.2		A shi su su su t fils
2.2	Use the experiment measurements devices correctly.	S.2	Laboratory practices	Achievement file laboratory test
2.3	Analyze and interpret experimental data.	S.2	Reports	
2.4	Communicate positively with others.	S.3	Presentation Work group	Reports Presentation
3.0	Values, autonomy, and responsibili	ity		
3.1	Participate in the development of team performance.	V.3	Work group	Reports Presentation

C. Course Content

No	List of Topics	Contact Hours
1.	Structure properties of solid by Microwave modules.	6
2.	X-ray diffraction	6
3.	X-ray fluorescence.	б
4.	Energy gap	б
5.	5. Hall effect for conductors	
6.	Seebeck effect	6
7.	Hysteresis loop	б
8.	Photo resistance	б
9.	Dielectric constant	6
10.	Solar Cell	б
	Total	60

	Course Learning Outcomes					
	1.1	2.1	2.2	2.3	2.4	3.1
Topic 1	V	V	V	V	V	V
Topic 2	V	V	V	V	V	V
Topic 3	V	V	V	V	V	V
Topic 4	V	V	V	V	V	V
Topic 5	V	V	V	V	V	V
Topic 6	V	V	V	V	V	V
Topic 7	V	V	V	V	V	V
Topic 8	V	V	V	V	V	V
Topic 9	٧	V	V	V	V	V
Topic 10	٧	V	V	V	V	V

Table: The matrix of consistency between the content and the learning outcomes of the course.

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework, quizzes, reports, and presentation.	1: 15	10 %
2.	Achievement file.	1:15	15 %
3.	Midterm practical exam *	9: 10	25 %
4.	Final practical exam**	End of Semester	50 %

* (20-marks for practical part and 5-marks for the theoretical part)

** (40-marks for practical part and 10-marks for the theoretical part)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Experimental Reports. Supplementary Materials. Elementary Solid-State Physics, M. A. Omar, Addison-Wesley, (1993). Solid State Physics (an Introduction), 2nd Edition, Philip Hofmann, Wiley, (2015). 		
Supportive References	 Introduction to Solid State Physics, 8th Edition, Charles Kittel, Wiley, (2004). 		
Electronic Materials	 Blackboard. PowerPoint presentations. Digital library of University of Bisha <u>https://ub.deepknowledge.io/Bisha</u> 		

Other Learning Materia	als NA		
2. Required Facilities and equipment			
Items	Resources		
facilities	Classrooms, Physics lab.		
Technology equipment	Data show or smart board.		
Other equipment	Laboratory equipment.1. Structure properties of solid by Microwave modules.2. X-ray diffraction3. X-ray fluorescence.4. Energy gap5. Hall effect for conductors6. Seebeck effect7. Hysteresis loop8. Photo resistance9. Dielectric constant10. Solar Cell		

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Extent of achievement of course learning outcomes.	Teachers, students.	Direct (Final exams), Indirect (Questionnaire).
Effectiveness of teaching.	Teachers, students.	Indirect (Questionnaire)
Effectiveness of assessment.	Teachers, students.	Indirect (Questionnaire)
Quality of learning resources	Teachers, students.	Indirect (Questionnaire)
Quality of facilities available	Teachers, students.	Indirect (Questionnaire)
Fairness of evaluation	Peer reviewer.	Direct (Final exams reevaluation).

G. Specification Approval Data

COUNCIL /COMMITTEE	College of Science Council
REFERENCE NO.	20
DATE	17 August 2023

